Share

TB 683 2017 Technical requirements and specifications of state-of-the-art HVDC switching equipment

The new applications projected for future DC grids and multi-terminal DC systems at different voltages suggest that various DC equipment may be required; in particular all sorts of switching devices. However, the requirements for DC switching capabilities are different from those for AC equipment. In the brochure, a review of the technical requirements of HVDC switching equipment and an overview on the technical capabilities and limitations of existing switching equipment is given. Included are all sorts of switchgear such as disconnecting switches, earthing switches, transfer switches, and especially circuit breakers.

Download TB from ecigre website (prior identification in ecigre is required in other open page)

TABLE OF CONTENTS

EXECUTIVE SUMMARY

1 INTRODUCTION

2 SWITCHING IN DC SYSTEMS (BASICS)

   2.1 INTRODUCTION

   2.2 GENERAL REQUIREMENTS COMPARED TO HVAC DEVICES AND SYSTEMS

   2.3 HVDC SWITCHES

      2.3.1 Converter disconnecting switch (CD) and bypass disconnecting switch (BPD)

      2.3.2 Filter disconnecting switch (FD)

      2.3.3 Substation disconnecting switch (SD)

      2.3.4 Line disconnecting switch (LD) and pole line disconnecting switch (PLD)

      2.3.5 Line to neutral disconnecting switch (LND)

      2.3.6 Neutral bus disconnecting switch (NBD)

      2.3.7 Neutral bus earthing disconnecting switch (NBED)

      2.3.8 Electrode line disconnecting switch (ELD)

      2.3.9 Substation pole paralleling disconnecting switch (SPPD)

      2.3.10 Pole line earthing switch (PLES)

      2.3.11 Neutral bus earthing switch (NBES)

      2.3.12 Filter earthing switch (FES)

      2.3.13 Converter earthing switch (CES)

      2.3.14 Substation earthing switch (SES)

      2.3.15 Pole paralleling earthing switch (PPES)

      2.3.16 Neutral bus switch (NBS)

      2.3.17 Earth return transfer switch (ERTS) and metallic return transfer switch (MRTS)

      2.3.18 Converter bypass switch (BPS)

      2.3.19 High-speed earthing switch (HSES)

      2.3.20 Paralleling switch (PS)

      2.3.21 Circuit breaker (CB)

   2.4 CURRENT ZERO CREATION SCHEMES

      2.4.1 Arc voltage

      2.4.2 Passive oscillation

      2.4.3 Active current injection

   2.5 CURRENT COMMUTATION

   2.6 DISSIPATION OF THE ENERGY

3 HVDC SYSTEM TOPOLOGIES

   3.1 INTRODUCTION TO HVDC SYSTEMS

3.1.1 HVDC transmission connections

   3.2 POINT-TO-POINT CONNECTIONS

      3.2.1 Schemes of point-to-point HVDC connections

      3.2.2 Point-to-point HVDC projects

   3.3 MULTI-TERMINAL RADIAL HVDC SYSTEMS

      3.3.1 Sardinia - Corsica – Italy 3 terminal link

      3.3.2 Québec – New England 5 terminal link

      3.3.3 Nan’ao Island 3 terminal VSC MTDC link

      3.3.4 Zhoushan 5 terminal VSC MTDC link

      3.3.5 North-East Agra UHVDC Link

      3.3.6 Planned MTDC projects

      3.3.7 Advantages and disadvantages of MTDC networks versus point-to-point schemes

      3.3.8 Specific switching equipment used for LCC radial HVDC systems

   3.4 MULTI-TERMINAL MESHED HVDC SYSTEMS

      3.4.1 Advantages and challenges of meshed HVDC systems

      3.4.2 Evolution towards meshed networks

      3.4.3 Examples of meshed multi-terminal study topologies

      3.4.4 New requirements for switching equipment in meshed grids

      3.4.5 Fault currents on meshed networks

      3.4.6 Main differences between radial and meshed topologies for switching apparatus

4 HVDC DISCONNECTING SWITCHES

   4.1 INTRODUCTION

   4.2 DESCRIPTION OF BASIC FUNCTIONALITY AND BASIC WORKING PRINCIPLE

      4.2.1 Switching requirements

      4.2.2 Design difference in creepage distance between AC DS and DC DS

   4.3 OVERVIEW OF EXISTING INSTALLATIONS, PRODUCTS, APPLICATIONS

      4.3.1 Japanese experience

      4.3.2 Chinese experience

      4.3.3 New Zealand experience

      4.3.4 Canadian experience

      4.3.5 Korean experience

   4.4 FUTURE REQUIREMENT

      4.4.1 Bus transfer

      4.4.2 Line transfer at full load

5 HVDC EARTHING SWITCHES

   5.1 DESCRIPTION OF BASIC FUNCTIONALITY AND BASIC WORKING PRINCIPLE

      5.1.1 Pole Line Earthing Switch (PLES)

      5.1.2 Neutral Bus Earthing Switch (NBES)

      5.1.3 Filter Earthing Switch (FES)

      5.1.4 Converter Earthing Switch (CES)

   5.2 LIST OF PERFORMANCE SPECIFICATIONS OF HVDC EARTHING SWITCHES

   5.3 OVERVIEW OF EXISTING INSTALLATIONS, PRODUCTS, APPLICATIONS

   5.4 OVERVIEW OF (NEAR) FUTURE INSTALLATIONS, PRODUCTS, APPLICATIONS, REQUIREMENTS

6 HVDC TRANSFER SWITCHES

   6.1 INTRODUCTION

   6.2 DESCRIPTION OF BASIC FUNCTIONALITY AND BASIC WORKING PRINCIPLE

      6.2.1 Basic functionality of HVDC transfer switches

      6.2.2 Operating principle of transfer switches

      6.2.3 Transfer between operation modes

   6.3 LIST OF PERFORMANCE SPECIFICATIONS FOR HVDC TRANSFER SWITCHES

      6.3.1 Rated operating current

      6.3.2 Maximum continuous current in system operation

      6.3.3 Maximum commutation current

      6.3.4 Maximum continuous operating voltage

      6.3.5 Operating sequence

      6.3.6 Time parameters

   6.4 OVERVIEW OF EXISTING INSTALLATIONS, PRODUCTS, APPLICATIONS

      6.4.1 Examples of existing transfer switch products:

      6.4.2 Examples of existing applications:

      6.4.3 Highest requirement during the last 5 years

   6.5 OVERVIEW OF (NEAR) FUTURE INSTALLATIONS, PRODUCTS, APPLICATIONS, REQUIREMENTS

      6.5.1 Design of HVDC transfer switches in GIS

      6.5.2 Special structural design for HVDC transfer switches

7 BYPASS SWITCHES

   7.1 DESCRIPTION OF BASIC FUNCTIONALITY AND BASIC WORKING PRINCIPLE

7.1.1 Bypass switching operations

   7.2 LIST OF PERFORMANCE SPECIFICATIONS OF BYPASS SWITCHES

   7.3 OVERVIEW OF EXISTING INSTALLATIONS, PRODUCTS, APPLICATIONS

   7.4 OVERVIEW OF (NEAR) FUTURE INSTALLATIONS, PRODUCTS, APPLICATIONS, REQUIREMENTS

8 HIGH-SPEED EARTHING SWITCHES

   8.1 DESCRIPTION OF BASIC FUNCTIONALITY AND BASIC WORKING PRINCIPLE

      8.1.1 Bipolar operation mode with electrode return path

      8.1.2 Bipolar operation mode with dedicated metallic return path

      8.1.3 Monopolar operation mode with electrode return path

      8.1.4 Backup functionality for Neutral Bus Switch

   8.2 LIST OF PERFORMANCE SPECIFICATION FOR HSES

      8.2.1 Maximum continuous DC current and commutation current

      8.2.2 Maximum Continuous Operating Voltage

   8.3 OVERVIEW OF EXISTING INSTALLATIONS, PRODUCTS, APPLICATIONS

   8.4 OVERVIEW OF (NEAR) FUTURE INSTALLATIONS, PRODUCTS, APPLICATIONS, REQUIREMENTS

      8.4.1 Future requirements due to VSC converter technologies

      8.4.2 Future requirements due to HVDC grids

9 PARALLELING SWITCHES

   9.1 DESCRIPTION OF BASIC FUNCTIONALITY AND BASIC WORKING PRINCIPLE

9.1.1 Switching of converter stations / converter groups

9.1.2 Switching of DC lines/cables

   9.2 LIST OF PERFORMANCE SPECIFICATIONS OF PARALLELING SWITCHES

   9.3 OVERVIEW OF EXISTING INSTALLATIONS, PRODUCTS, APPLICATIONS

   9.4 OVERVIEW OF (NEAR) FUTURE INSTALLATIONS, PRODUCTS, APPLICATIONS, REQUIREMENTS

10 TECHNICAL FRAMEWORK FOR HVDC CIRCUIT BREAKERS

   10.1 WAVE TRACE DEFINITIONS

      10.1.1 Transient Interruption Voltage (TIV)

      10.1.2 Transient Interruption Voltage Peak (Peak TIV)

      10.1.3 Prospective Fault Current

      10.1.4 Peak fault Current

   10.2 TIMING DEFINITIONS

      10.2.1 Introduction

      10.2.2 Definitions

      10.2.3 Nominal current interruption

   10.3 HVDC FAULT CONDITIONS

      10.3.1 Short-circuit current conditions

      10.3.2 DC fault in LCC systems

      10.3.3 DC fault in VSC systems

      10.3.4 Pole-to-earth fault in VSC HVDC systems

      10.3.5 Pole-to-pole faults in VSC HVDC systems

      10.3.6 Comparison

      10.3.7 Mixed AC/DC fault

      10.3.8 Influence of reactors

   10.4 SYSTEM STABILITY

      10.4.1 AC system stability

      10.4.2 Continued converter operation under a DC fault

      10.4.3 Insulation coordination

      10.4.4 Converter current withstand

      10.4.5 Auto-reclose

11 BUILDING BLOCKS OF HVDC CIRCUIT BREAKERS

   11.1 SEMICONDUCTOR DEVICES

11.1.1 Wide Band Gap Devices

   11.2 SURGE ARRESTERS

   11.3 RESIDUAL CURRENT BREAKER

   11.4 MECHANICAL SWITCH – ULTRA-FAST DISCONNECTOR

   11.5 ELECTROMAGNETIC ACTUATORS

12 PASSIVE OSCILLATION HVDC CIRCUIT BREAKERS

   12.1 DESCRIPTION OF BASIC FUNCTIONALITY AND BASIC WORKING PRINCIPLE

   12.2 EXAMPLE TOPOLOGY 1

   12.3 EXAMPLE TOPOLOGY 2

   12.4 TOPOLOGY BASED ON POWER ELECTRONICS

   12.5 OVERVIEW OF PERFORMANCE SPECIFICATIONS OF TESTED PROTOTYPES

13 ACTIVE CURRENT INJECTION HVDC CIRCUIT BREAKERS

   13.1 DESCRIPTION OF BASIC FUNCTIONALITY AND BASIC WORKING PRINCIPLE

   13.2 EXAMPLE TOPOLOGY 1

   13.3 EXAMPLE TOPOLOGY 2

   13.4 EXAMPLE TOPOLOGY 3 - ALTERNATIVE SCHEME

   13.5 EXAMPLE TOPOLOGY 4

   13.6 OVERVIEW OF PERFORMANCE SPECIFICATIONS OF TESTED PROTOTYPES

14 POWER ELECTRONIC HVDC CIRCUIT BREAKERS

   14.1 OVERVIEW

   14.2 TYPICAL OPERATION

   14.3 POWER ELECTRONIC CIRCUIT BREAKER CONCEPT 1

      14.3.1 Status of the circuit breaker

      14.3.2 Intrinsic limits

   14.4 OTHER PROPOSED TOPOLOGIES

   14.5 FAULT CURRENT INTERRUPTION TIMING

15 MECHANICAL AND POWER ELECTRONIC HYBRID HVDC CIRCUIT BREAKERS

   15.1 HYBRID CIRCUIT BREAKER CONCEPT 1

      15.1.1 Status of the circuit breaker

      15.1.2 Intrinsic Limits

   15.2 HYBRID CIRCUIT BREAKER CONCEPT 2

      15.2.1 Status of the circuit breaker

      15.2.2 Intrinsic Limits

   15.3 HYBRID CIRCUIT BREAKER CONCEPT 3

      15.3.1 Status of the circuit breaker

      15.3.2 Intrinsic Limits

16 COMPARISON OF DIFFERENT HVDC CIRCUIT BREAKER PRINCIPLES

   16.1 INTRODUCTION

   16.2 INTERNAL CURRENT COMMUTATION TIME

   16.3 INTERRUPTION CAPABILITY

   16.4 ON-STATE LOSSES

   16.5 RATE OF RISE OF FAULT CURRENT

   16.6 INSTALLATION COSTS

   16.7 EXPECTED USAGE OF CIRCUIT BREAKERS IN FUTURE MTDC VSC SYSTEMS

      16.7.1 Passive oscillation HVDC circuit breaker

      16.7.2 Active current injection HVDC circuit breaker

      16.7.3 Power Electronic HVDC circuit breaker

      16.7.4 Mechanical and power electronic hybrid HVDC circuit breaker

   16.8 PROTECTION TIMING

17 GAPS BETWEEN REQUIREMENT AND EXISTING PERFORMANCE SPECIFICATIONS

   17.1 INTRODUCTION

   17.2 HVDC CIRCUIT BREAKER

      17.2.1 HVDC CB Operation Delay (internal current commutation time)

      17.2.2 HVDC CB Maximum Current Breaking Capability

      17.2.3 HVDC CB Maximum Energy Dissipation/Handling Capability

      17.2.4 HVDC CB Transient Interruption Voltage

      17.2.5 HVDC CB Failure

      17.2.6 Peak Withstand Current

   17.3 NON-BREAKING SWITCHING EQUIPMENT

18 TEST METHODS AND TEST CIRCUITS FOR HVDC SWITCHGEAR

   18.1 TEST METHODS AND TEST CIRCUITS OF HVDC CIRCUIT BREAKERS

      18.1.1 Introduction

      18.1.2 Review of HVDC circuit breaker tests and test circuits for LCC application

      18.1.3 Recent tests of HVDC circuit breakers

      18.1.4 Candidate test circuits for HVDC circuit breakers

   18.2 MRTS TEST

19 BIBLIOGRAPHY/REFERENCES