TB 604 2014 Guide for the Development of Models for HVDC Converters in a HVDC Grid

This TB documents the requirements of simulation models for modular multi-level voltage-sourced converters (MMC-VSC) that would form the basis of a DC Grid and provides a framework for model development that is consistent with known MMC-VSC technologies presently used. This framework can be adapted to changing power electronic topologies and control algorithms. In addition, a 9 bus DC Grid test system was developed and documented. Two and four bus test systems that are subsets of the 9 bus system are also presented.

Download TB from ecigre website

Executive Summary
Chapter 1. Scope of the Technical Brochure
      1.1 Introduction
      1.2 Purpose of the Guide
      1.3 Overview to Brochure by Chapter
      1.4 Reference list of CIGRE Material
      1.5 Abbreviations
Chapter 2. Definition of Types of VSC HVDC Models
      2.1 Full Physics Based Models (Type 1)
            2.1.1 Description
            2.1.2 Computational times
            2.1.3 Types of studies
      2.2 Full Detailed Models (Type 2)
            2.2.1 Description
            2.2.2 Computational times
            2.2.3 Type of studies
      2.3 Models based on simplified switchable resistances (Type 3)
            2.3.1 Description
            2.3.2 Computational times
            2.3.3 Type of studies
      2.4 Detailed Equivalent Circuit Models (Type 4)
            2.4.1 Description
            2.4.2 Computational times
            2.4.3 Type of studies
      2.5 Average Value Models (Type 5 and 6)
            2.5.1 Description
            2.5.2 Computational times
            2.5.3 Type of studies
      2.6 Phasor Models (Type 6 implemented in RMS simulation)
            2.6.1 Description
            2.6.2 Computational Times
            2.6.3 Type of studies
            2.6.4 Simplified Phasor Models
      2.7 Power-Flow Models (Type 7)
            2.7.1 Description
            2.7.2 Computational times
            2.7.3 Type of studies
      2.8 Specialized Implementation
            2.8.1 Hybrid simulation
            2.8.2 Real-time simulation
      2.9 References
Chapter 3. VSC HVDC Control System Architecture
      3.1 Recommended guidelines for HVDC VSC simulation model development and organization
            3.1.1 Generic Models
            3.1.2 Control Hierarchy
            3.1.3 Dispatch Controls
            3.1.4 Upper Level Controls
            3.1.5 Lower Level Controls
            3.1.6 PWM-type converter models
            3.1.7 Control per-unitization
      3.2 Other generic components
      3.3 Real Time DC Grid Simulation
      3.4 References
Chapter 4. Cables and Transmission Lines for VSC Systems
      4.1 General
      4.2 Overhead Transmission Lines
      4.3 Cables
      4.4 Line/cable models
      4.5 Frequency dependent cable model:
            4.5.1 Modal domain models
            4.5.2 Phase domain models
      4.6 Studies and Their Line/Cable Models
      4.7 References
Chapter 5. Models of protection systems for HVDC grids
      5.1 Introduction
      5.2 Models for different parts of the protection system
            5.2.1 Transducers
            5.2.2 Protective Functions
            5.2.3 DC Breaker models
            5.2.4 Fault current limiters
            5.2.5 Converters with embedded fault clearing capabilities
            5.2.6 Dynamic Braking System (DC chopper)
      5.3 System wide protection design
      5.4 References
Chapter 6. DC Grid test systems description
      6.1 Introduction
      6.2 Basic system data
            6.2.1 System Data
            6.2.2 AC-DC Converter Station Data
            6.2.3 DC-DC Converter Station Data
            6.2.4 AC Slack Busses
            6.2.5 Loads
      6.3 Test system components
            6.3.1 HVDC converters
            6.3.2 Control system and protection
            6.3.3 DC-DC converters
      6.4 Lines parameters
            6.4.1 General description of lines
            6.4.2 DC cables
            6.4.3 DC overhead lines
            6.4.4 AC cables
            6.4.5 AC overhead lines
      6.5 Test system 1: Point-to-point link (DCS1)
            6.5.1 General description
            6.5.2 Converters control and set points
            6.5.3 Static and dynamic simulations
      6.6 Test system 2: 4-terminal DC Grid (DCS2)
            6.6.1 General description
            6.6.2 Converters control and set points
            6.6.3 Static and dynamic simulations
      6.7 Test system 3: Full CIGRE B4 DC Grid Test System
            6.7.1 Converters control and set points
            6.7.2 Static and dynamic simulations
      6.8 References
Chapter 7. Model Security
      7.1 Motivations for Model Security
      7.2 Black Box
            7.2.1 Types of black box
            7.2.2 Advantages of black box modeling
            7.2.3 Security risks associated to black box modeling
            7.2.4 Black or Grey Box Interface and Control Tuning
      7.3 Password Based Model Security
      7.4 Physical Separation Security through Co-simulation
      7.5 Development of Interconnection Standards
      7.6 Factory Acceptance Testing with Multiple Vendors
      7.7 References
      8 Conclusions
Appendix A Current Regulator (Upper Controller)
Appendix B: MMC Control performance with different lower types algorithms
Appendix C - Design of the CIGRE DC Test System
      C1 General
      C2 Rated Voltages
      C3 Choice of the Line and Cables configuration
      C4 Tower top geometry
      C5 References
Appendix D - Modelling Hybrid AC/DC Network for Dynamic Stability Studies
      D1 Introduction
      D2 AC/DC Converter
      D3 AC/DC Meshed Grid
      D4 Parameters of the DC Grid Test System
            D4.1 Voltage Source Converter
            D4.2 Synchronous Machine
            D4.3 Excitation Controls
            D4.4 Hydraulic Governor Controls
            D4.5 Hydraulic Turbine Control
      D5 DC Grid Test System Simulation
            D5.1 Event 1: Three-phase fault with line opening
            D5.2 Event 2: Loss of 1,000 MW power plant
      D6 EMT Average Value Model and RMS Stability Model Comparison
            D6.1 Case I
            D6.2 Case II
      D7 References
Appendix E DC/DC converters
      E1 References