Share

TB 051 1996 SC 38 WG 38.01.06 Load flow control in high voltage systems using FACTS controllers.

The brochure gives an overview on the impact of different FACTS controllers on the system and presents examples of the use of such equipment in the system. It is written for engineers to understand the basic interactions between the FACTS equipment and the system when solving system problems.

 Download TB from ecigre website 

TABLE OF CONTENTS

1 INTRODUCTION

2 SYSTEM REQUIREMENTS FOR LOAD FLOW

3 FACTS CONTROLLERS

      3.1 Basic Operating Principies

            3.1.1 Physical Principies

            3.1.2 Controlled Variables

            3.1.3 Impact of Controller Type and Location

      3.2 Power Flow Control in the System

            3.2.1 Power Flow Control in Long-Distance Transmission Systems

            3.2.2 Power Flow Control on One Line Carrying a Fraction of the Total Power Transmission in

                      Power Corridor

            3.2.3 Power Flow Control to Share Load Between Main Transmission Facilities

            3.2.4 Power Flow Control of Lines in Meshed Networks

      3.3. Basic Operating Principles and Basic Models of FACTS Devices

            3.3.1 Controlled Series Compensation (CSC)

            3.3.2 Controlled Series Compensation with GTO Converter (GTO-CSC)

            3.3.3 Static Var Compensator (SVC)

            3.3.4 Static Var Generator (SVG)

            3.3.5 Phase Shifting Transformer (PST)

                  3.3.5.1 Phase Angle Regulator (PAR)

                  3.3.5.2 Quadrature Boosting Transformer (QBT)

            3.3.6 Interphase Power Controller (IPC)

            3.3.7 Unified Power Flow Controller (UPFC)

      3.4 Power Flow Control in Transmission System

            3.4.1 Controlled Series Compensation (CSC)

            3.4.2 Controlled Series Compensation with GTO Converter (GTO-CSC)

            3.4.3 Static Var Compensator (SVC)

            3.4.4 Static Var Generator (SVG)

            3.4.5 Phase Angle Regulator (PAR)

            3.4.6 Quadrature Boosting Transformer (QBT)

            3.4.7 Interphase Power Controller (IPC)

            3.4.8 Unified Power Flow Controller (UPFC)

      3.5 Power Flow Control in Meshed Systems

            3.5.1 Load Flow Control in a Simple System

                  3.5.1.1 Action of the Quadrature Boosting Transformer

                  3.5.1.2 Action of the GTO-CSC

                  3.5.1.3 Action of the Unified Power Flow Controller

            3.5.2 Load Flow Control in a Complex System

                  3.5.2.1 Description of FACTS Models

                  3.5.2.2 Description of the System and Simulation

                  3.5.2.3 Action of the Quadrature Boosting Transformer

                  3.5.2.4 Action of the GTO-CSC

                  3.5.2.5 Action of the Unified Power Flow Controller

4 IMPACT OF FACTS CONTROLLERS ON LOAD FLOW AND STABILITY

      4.1 Use of FACTS Devices lo Improve Power Flow I interconnected Systems

            4.1.1 Introduction

            4.1.2 Application of FACTS Controllers

            4.1.3 Economic Considerations

            4.1.4 Conclusions

      4.2 Load Flow Control in a Complex Interconnected Network

            4.2.1 Introduction

            4.2.2 Study Objective

            4.2.3 Cases Considered and Results

            4.2.4 Conclusions

      4.3 Link between Synchronous Sub-Networks without Increase of Short-Circuit Currents

            4.3.1 Introduction

            4.3.2 Loss of Generation

            4.3.3 Short Circuit

            4.3.4 Synthesis

      4.4 Enhancement of First Swing Stability of a Large Power System

            4.4.1 Introduction

            4.4.2 Studies of Reference Situation

                  4.4.2.1 Reference Situation

                  4.4.2.2. Shunt FACTS Devices

                  4.4.2.3 Series FACTS Devices

                  4.4.2.4 Phase Angle Regulator

            4.4.3 Situation in Power System

            4.4.4 Synthesis

      4.5 Power Oscillation Damping in a Meshed System

            4.5.1 System Configuration

            4.5.2 Simulation

            4.5.3 Synthesis

      4.6 Power Oscillation Damping in Transmission System

            4.6.1 System configuration

            4.6.2 Simulation

            4.6.3 Synthesis

5 CONCLUSIONS

6 REFERENCES

   APENDIX